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ABSTRACT

We use techniques of Singular Perturbation theory to investigate. the
scattering of nonrelativistic charged particles by a standing light ;nve
(Kapitza-Dirac scattering). Unlike previous treatments, we give explicit
results for the effects of the time dependent part of the field. For low field
intensity/low particle energy we show that the leading order effects can be
found fram an averaged equation and we compute corrections. For the strong
fields that can be produced by modern lasers and/or high particle energies we
show that the time dependence of the potential leads to focpsing. V

Our methods can be applied to other problems with time-periodic potentials.
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I. INTRODUCTION

In 1933 Kapitza and Dirac [1] predicted that electrons traveling in a
standing light wave would be reflected fram the planes of peak intensity. The

probability per electron for reflection was proportional to the square of the '

product of the field intensity and the interaction time. Because the light
sources available at that time were too weak to generate an cbservable effect,
the subject was neglected until the discovery of the laser. Since then,
mmerous theoretical and experimental studies have been devoted to this subject.

The earliest of these theoretical papers [2,3] followed closely the
original treatment of Kapitza and Dirac inasmuch as they relied on a first-order
expansion of the wavefunction in temms of the standing wave field. Like the
original peper, they are not valid for presently available laser intensities
since they would predict scattering probabilities in excess of unity. M. V.
Fedorov [4] published the first extensive treatment of the problem. By
neglecting the time dependent part of the standing wave, he was able to rewrite
the Schrodinger equation in the form of a Mathieu equation. Solutions were then
found for the cases of a low intensity field and a high intensity field.
Unfortunately, neither of these cases cozresponded to intensities used in the
experiments. '

Gush and Gush [5) used the mn'relativist‘ic Green's function for an electron
in a standing wave field to produce an exact solution to the problem when the
time dependent part of the field is neglected. This treatment is not only valid
for all intensities up to the point where the time dependent part of the field
becanes important but also for electron momenta that do not satisfy the Bragg
conditions. Furthermore, the probabilities for higher-order reflections are
treated. Unfortunately, the final expressions for the scattering p:obabilities

are not in terms of known functions and are urwieldy.
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The gquestion of what role if any the time dependent part of the
standing-wave field plays in the scattering process is still an unresolved
issue. Gush and Gush [5] and others have argued that the time dependent portion
of the field can safely be neglected for the intensities used in the reported
experiments. This conclusion has been disputed by Ehlotzky et al. [6] whose
calculations show that the time dependence of the field has a significant
influence on the scattering of the electron. The validity of their calculation
remains in doubt in view of the fact that except for small interaction times and
intensities the scattering probabilities for the time averaged case differ from
those predicted by the more exact treatment of Gush and Gush (S].

In this paper, the role of the time dependent portion of the standing wave
is investigated using several different approximation techniques. 1%he geometry
and governing equations are introduced in Section 1I. Various nondimensional
parameters are also defined in this section and interpreted in terms of physical
quantities. In Section III multiple time-scale perturbation theory is used to
calculate scattering probabilities for the case when the standing wave field is
not too strong. “his case corresponds to the one previously treated in the
literature. The time averaged equation is derived with no further assumption
and the limits of its validity are discussed. This equation is then solved in
temms of Mathieu functions and several new features of the scattering
probabilities are discussed. In Section IV, we treat the case that is
characterized by strong coupling and high electron energies. This case is
discussed using a semiclassical approximation. The wavefunction is again found
to be quasiperiodic within the limitations of perturbation theory. Under
appropriate conditions the corresponding classical problem leads to focusing.

In quantum mechanical terms the focusing is exhibited as sharp localized maxima

is the scattering probabilities. 1In Sechggagtﬁlgg IC: grsr &'sr 2re m ( mc)
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II. MODEL

In this article we will consider the problem of a nonrelativistic,
quantum-mechanical electron interacting with a classical, electramagnetic,
standing wave as illustrated in Figure 1. The electron has initial energy E and
momentum 3 which is chosen so as to lie in the x'-z' plane. A standing wave of
frequency w lies along the x'-axis and is assumed to be plane polarized along the
y'~axis. The interaction is turned on at t = 0 and continues for a time T = L/v
wheve v = |§|/m is the electron velocity, m is the electron mass, and L is the
interaction length.

The standing wave is given by the vector potential,

= A(cos(kx'=ut) + cos(kx*' + mt))§ = 23 coskx' cosut ;. (2.1)

Here A is the intensity of one of the two counter-propagating fields that
cambine to make the standing wave and k = w/c.

Because the electron is nonrelativistic and spin effects are not important
for most cases of interest, its behavior is described by the solution of the
Schrodinger equation with the external field (2.1). This eguation can be

written in the following conventional nondimensional form:

32 3y
[—= - 29 cos2x(l + cos27Y/¢€)]¥ = - i 3+ (2.2a)
3*2

x = kx' (2.2b)
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T« DOt (2.2c)
2mc?

1€ ,, v )

q = E rm A ( .w)

€= ho (2.2¢)
2mc?

For all cases in which an experiment is feasible hw << mc2 so. that
el . (2.3)

The initial condition for the wave function is specified by its free-space value

at the time when the interaction is turned on

vi(x,T = 0) = exp(iBx) . (2.4)
where

B = Px/hk (2.5)

A cursory inspection of Eg. (2.2a) shows that two types of interaction .of
the electron witﬁ the field can occur. In one case the particle only exchanges
momentum with the field. This is the elastic scattering mode that has been

extensively investigated {1-5]. The term in the potential that only has a
spatial dependence determines this interaction. The remaining term is a product




-

ol * F. T
b
it

of a spatial and temporal piece. Here the electron experiences a change in both
momentum and energy each time it interacts with the field. This is the
inelastic portion of the scattering.

Because the potential in Eq. (2.2a) only permits the electron to change its
nondimensional momentum by multiples of 2, the final state of the electron must

be characterized by a momentum P, which satisfies

pn = thn = hk(B + 2n), ns= 0, il, 12' YY) (2.6)
The probability amplitude that after an interaction time Te the electron is in a
state with momentum p_ is given by

Ll 2

P_(B,7g) = |% L_ exp(-i8_z)¥ (z, 7 )dz @2.7)

These probabilities must satisfy the condition

-
nz-.. P =1 (2.8)
The strength of the interaction is determined by the parameter q introduced
in Eq. (2.2d). 1In nrder to provide a physical interpretation for this gquantity
it is convenient to rewrite it in temms of the individual wave intensities

1 = ck?A%/8x% so that

Zwrolzll. 2me2
q =

hue ) ho (2.9)

where r, is the classical electron radius and A = 1/k. When I is rewritten in
terms of the photon number density o (I = hwcp) then the guantity in the square

brackets reduces to Zm:oxzp. The coupling constant q is therefore proportional
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to the number of photons in a cylinder of length 2r; and radius A. For
available laser sources q can reach values of 210% in unfocussed beams although

T U B

q ™~ 10 is mbre characteristic of the published experiments [7-12].
Because we have been unable to find an exact solution for kq. (2.2a), we

have had to resort to various perturbation schemes to find approximate

expressions for the wave function in different regimes. These regimes are
characterized by the relative size of the adjustable parameters q, € and 8. In
the remainder of this paper we will be concerned with the range of values of the

; parameters accessible to the experimentalist.
I1I. WEAK COUPLING
_ The weak coupling limit is characterized by the two conditions
. 1/e >> q
: and
é 1/¢ > |8l.

This case covers the conditions that characterize previous experiments [7-12],
i.e. |8] <10; g €10 and ¢ 1= 106, Under these conditions multiple-time-scale
perturbation theory [13] can be used to find an approximate expression for the

wavefunction.

In order to apply this perturbation analysis, the wavefunction y is assumed

to have the following asymptotic expansion: :_

: N No1- I
2 Wz, = [ v (x,t) +0(e ) 3.1
) n=0 s
where each y_is a function of the time scales
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tk = ekT ) k= - 1' 0. 1' ese (3.2)

The reason for considering a sequence of time scales is that each mode of the
wavefunction has a characteristic time scale t = w(e)tr that depends on £. The
most convenient means of studying all the modes simultaneously is therefore to
isolate effects to a given order of €, |

For this problem we need to expand the wave function to order €2 so that
only four time scales are necessary, i.e. t-1,to,ti1,t2. Of these four time
scales, t; will make no contribution to the calculation so it will be eliminated
fram the start. The time derivative in Eg. (2.2a) is then written as

S _ .19 .3 2 3
3t ¢ 3t_1+8to+e at, 3.3)

Once Egs. (3.1) - (3.3) are substituted in Eg. (2.2a) and coefficients of the
various powers of ¢ are set equal to zero, the following set of coupled

differential equations emerge:

-

av)o

- o
o(e™1) ow 0, (3.4)
. (151
0(c%) v Lbg = - 1 37—, (3.5)
-1
173
o) - . Lyp=-ig (3.6)
' -1
g 3
0(e2) Ly, + i '3—6 = - i T (3.7)

-1

where -
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32 )
L &—a cos2x(l + 2t_y) +1i 54— , .
" 2q x( cos2t_;) 3t (3.8)

The initial conditions are then given by
Vp(xst_1 = O,tg = O,t; = 0) = & = exp(iBx) (3.9)
Equation (3.4) requires that y is independent of.t_l, i.e. Yg=vp(x,tg,t2).

With this result Eq. (3.5) can be integrated over t.; to give an expression for

¥1 in temms of ¥y

v = il(rl{lo)t-l - q cos2x Sinzt_1¢00] (3.10)

In general, this equation would contain an integration constant that is a
function of x, to and t;. Because this function can be shown to be a part of
Vo, it will not appear in this discussion. The secular termm in Bg. (3.10) is

removed by requiring that the coefficient of t-; be set equal to zero. This

condition yields

- 32 ]
E - - + eom— =
LYo (—azz 2 cos2x + i ato)wo 0 (3.11)
and leaves
¥; = -iqg cos2x sin2t_j ¥y (3.12)

Equation (3.11) is the one we would have obtained if we had followed the

traditional approach and averaged kq. (2.2a) over the rapid oscillations.
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The solution of Eg. (3.11) which satisfies the initial condition (3.9) is

Vo (xstosta) = nz_‘. an(to)me, , (x,q) exp{-ir, . (q)t) (3.13)
with
= B*2n
a0 =CcT- " @ (3.14)

Here mea(z,q) is a Mathieu function [14) of order o and Aa (g) is its eigenvalue.

The constants cgr(q) are the Fourier coefficients of me,(z,q), i.e.

me (2,9 = [ C) (@ expli(a + 2r)z} (3.15)
r=-®

The substitution of Eq. (3.12) into Eg. (3.6) and the subsequent

integration over t_; yields the following expression for y,:

a!J)o
wz(X.t-l.to.tz) = 2q(cosZt-1-l) cos2xyg + sin2x >
q2
*+ 3 cos 2x(cosdt -1)yp + B(x,tq,t;) , (3.16)

where B is an undetermined function that satisfies the initial condition

B(x,0,0) = 0. (3.17)

There are no secular terms this time. In a similar manner Eq. (3.7) can be

integrated over t after the substitution of Eq. (3.16). Because we are solving
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for the wave function to 0(c?), we only need to investigate the differential
equation, L
92 _ 2q cos2x + i =2-|B Vo in2x 20
-a—z;- qcosx+13—tz = -i-ﬁ-z-'r 8qfcos2xyg + 2 sin2x - :
a2y,
- cos2x = * 3q2(1 - cos4x)yp
ax (3.18)

that arises from setting the coefficient of t_.1 to zero. The left-hand side of

Eg. (3.18) contains the same operator that occurs in Eq. (3.11). We can

therefore write B as

B = E‘ by, (x,t2) exj:{-iAB+2m(q)trg}. (3.19)

When Egs. (3.13) and (3.19) are substituted in Eq. (3.18) and the coefficients

of exp i B+2m(q) t, are set equal to zero, the following equation arises
32 o . 9 ;
[’éx_z - 2q cos2x + AB+2n]bn = -i 3, + 8anq(c052x + 2 sin2x %

a2
+ cos2xA,, ) - q (5 + 11 cosdx) meg (3.20)

We can now apply Fredholm's alternative theorem [15] to this equation which.

requires that

i—S=vya (3.21)




where
v
«Llne . @ a
LA ome8+2n me6+2n 2 (3.22)
and
6 = 8qf(1 + A8+2n) cos2x + 2 sin2x :—x] - q2(5+ 11 cosdx) (3.23)

Equation (3.21) with initial condition (3.14) has the obvious solution.

= 5320 (@) exp(-ivy (a)t2) (3.24)

%n
Equations (3.12), (3.13), and (3.24) can be cambined by using Egs. (3.1)

and (3.2) to give an approximate expression for the wavefunction

¥(x,t) = [1 - deq sin(21/e)] ] €_32%(qmeg,, (a,x)

N~

x exp{-i(Ag,,,(q) + ezyn(q))r}. 5,25

This wave function is still properly normalized to terms of O(e?). For the
condition that we assumed at the beginning of this section (¢! >> q and

e 1» j8]) the corrections to the lowest order wavefunction are negligible. As
an example consider the terms in the square brackets. If we calculate the
porobability (2.7) that the electron will be in a particular momentum state
after a time T then the second term in the square bracket makes a contribution

that is a factor (eq)? smaller than the first and can therefore be safely

1 e, . .
T
' Lot et

[ d e

: - - A LL'I L2




ignored as long as ¢! >> q. Even if there were same means of detecting this

small amplitude correction, we would have to contend with the fact that this
tem is oscillating at the frequency of the standing wave field.

The second term m the argument of the exponential in kg. (3.25) also does.
not appreciably influence the scattering probability as long as we are
considering reasonable interaction times (v < 10). This temm introduces a slow
modulation in time to the wavefunction. For q << e”!, the period of oscillation
is much greater than conceivable interaction times so again the correction
induced by the oscillating portion of the potential can be neglected. We are -
thus led to the conclusion that as long as q << & ! and |8|<< € ! the temporally
oscillating term in the vector potential can be safely neglected. %his result
contradicts the conclusions of Ref. [6].

‘the perturbation calculation is no longer valid when €q = 1 since the
second term in the square brackets of Eq. (3.25) becomes comparable with the
first term. If we return to the definition of q, Eg. (2.9), and ¢, Eq. (2.2¢),

then the product can be rewritten as

2mrgr21

———— 2 L
fioc 2nrgr?p (3.26)

€q =
where I = hucp has been used in the last step and p is the photon number
density. An estimate of when the time variation of the vector potential becomes
important is 2mrgi%p = 1. In other words, there is one photon in the vicinity
of the electron at all times. “his condition makes sense. The time dependent
part of the standing wave represents a stimulated emission or absorption of two
photons by an electron. This process will not be probable unless there are two
photons in the vicinity of the electron. Because a photon cannot be localized

perpendicular to direction of motion to a distance less than a wavelength, the
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vicinity of an electron is the volume 2mrgA2. We have therefore returned to the

condition given by Eg. (3.16). For A = 1 um, BEg. (3.16) reguires

I =10'* w/on . Although these intensities can be achieved for focussed laser

beams they cannot be achieved in the 1 cm beams needed to generate a reasonable.

interaction time for the electrons. On the other hand, CO, lasers (A = 10 um)

require I = 1011W/cm2 for Eq. (3.16) to be satisfied. This is presently possible.
when the small temms in BEgq. (3.25) are dropped, the wave function assumes

the form

vot) = B aime,,, () expl-ing,, (@1} . (3.27)

n==-c
The probability for scattering fram an initial state with momentum P; = gfhk to a
final state with momentum Pe = (8+ 2r)hk after a time T is then given by Eq.
(2.7) as

v 2 2 e
P8 = | I cE g oF;2Mq) expl-ing,, (@)1}

n=-o

(3.28)

and satisfies Eq. (2.8). Although very different in form, the continued
fraction expression for the scattering amplitude derived in Ref. [5) is
identical to Eq. (3.27). The advantages of the Mathieu function expansion over
its continued fraction form is that kq. (3.28) is easier to approximate
analytically and evaluate numerically. Because the Fourier coefficients of the
Mathieu functions satisfy a three term recursion relation [14), Mathieu's .
equation can be written as a matrix eigenvalue problem where the matrix is
tridiagonal. The eigenvalues A and the Fourier coefficients ct*ZM

, B8+2n 2r
easily found numerically using any standard program to diaygonalize the

are then

tridiagonal matrix.
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Figure 2 shows the scattering probability as a function of q for P hk;
p = hk, -hk, 3hk, -3hk and * = 2 for a standing wave with a wavelength of 1
ym. The interaction time is chosen so as to represent the approximate time a
200 eV electron takes to travel one centimeter. These values of the parameters .
are chosen as representative of a feasible experiment. One noticable feature of
these graphs is the increasing sensitivity of the scattering probability to the
standing wave intensity. This result is not surprising since increasing q
increases the number of terms that contribute to the summation in Eg. (3.13).
Each additional term adds another and higher frequency component to the
scattering amplitude. Even for relatively low intensities (such as at the peak
of the first maximum of the probability for scattering from hk to -hk (Fig.
(1c)), an increase of q by a factor of 2 is sufficient to move the scattering
probability to near zero. This sensitivity could explain the difficulty with
seeing this effect in the early experiments ([7-12). The variation of the
probability with g becames less severe if B is increased and higher order
scattering is considered. This result is shown in Fig. 3. Although the peak
scattering probability is reduced from the case shown in Fig. 2 it is still
respectable.

The probability for scattering from hk to -hk and from 3hk to -3hk as a
function of the interaction time t is shown in Figs. 4 and 5, respectively, for
several values of q. Again, an increase in q causes the probability to
fluctuate more rapidly but this time as .a function of . ‘

The last parameter that can be easily varied in an experiment is the angle
between the electron beam and the axis of the standing wave or equivalently B.
In Fig. 6 the scattering probability for the transition from 8hk to (8-2)hk as a
function of B is shown for two different values of q. These graphs show clearly

that for this particular transition the scattering probability is symmetrical.
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about the point B = 1. However, 8 = 1 is not necessarily the point of maximum
scattering. This could also explain the failure of several of the experiments
to observe Kapitza-Dirac scattering.
IV. STRONG COUPLING AND HIGH ENERGY.

As was pointed out in Section II1I, the MTS analysié that gave the leading .
behavior in the form of slowly modulated eigenfunctions of the time-averaged

problem breaks down if q = 0(l/e). To examine this case, we employ a variant of

the WKB method that allows for the possibility of resonance, caused by the time
dependence of the potential. We find that if certain conditions are met between
the wave characteristics of the incoming electron wavefunction and the standing
wave field, the amplitude evolves to very large localized maxima near focal
points and caustics of the rays of the corresponding classical system. We
expect that near such caustics the effects of many-particle interactions and
‘_self-radiation will became important. A realistic analysis of these, including
relativistic effects, will be presented in a subsequent paper.

This section is organized as follows: 1In part A we discuss the expansion
used and outline the calculation. In part B we present a perturbative treatment
of the Hamilton-Jacobi equation for the rays; a lowest order resonant case is
investigated in detail, and found to lead to the focusing of rays and caustic
formation. Finally, in part C we analyze the effects of focusing in the
classical problem on the probability amplitude.

A. The Quasiclassical Expansion

Although problems where a high frequency appoximation is relevant have
been studied extensively for time-independent potentials very few results of
this type exist for the non-separable time dependent case [16]. In our

discussion of the Kapitza-Dirac problem we shall use the potential
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V(x,t) = cos® x cos’t

but the method can be used for more general time-periodic potentials. For
problems of this type we expect quasiperiodic behavior.

In the previous section we saw this quasiperiodicity arise in our MTS
treatment which was valid (at least formally) for moderate energies. In
examininag the high energy/high frequency behavior in a system without internal
degrees of freedom, whose classical counterpart is described by a Hamiltonian

H(p,q,t) the ansatz
¥ = A exp(iS/h) (4.1)

is used. Substitution in the Schrodinger equation

HE/Qt) v(@,t) = - i 3% | (4.2)

(where p = - flt"a_acf) results, to leading order in h7! in the equation

u[% ,q,t] + 8.9 (4.3)
i.e. the classical Hamilton-Jacobi equation, showing that the phase S
corresponds to the classical action. ‘he next order produces an equation for

the amplitude (7 = A2):

(vr) = 0 (4.4)
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whose characteristics (rays) are the same as those of (4.3). F:om (4.4) it is .
seen that 7 is concerved in ray tubes so that if a tube collapses v (and A)
becomes infinite. This happens on caustics of the Hamilton-Jacobi equation
which are envelopes of families of rays in the (q,t) plane. If we think, in
(q,t,sq) space, of the surface formed by the rays through some initial curve
(e.g. if Sq(q,O) is given), then the caustics are the singularities of its
projection on the (q,t) plane, corresponding to folds, etc. of the surface.

It must be understood, as was shown by Buchal and Keller [17], that the
higher order terms neglected in (4.4) will become large at the caustic and thus
they must be included there. This effectively gives rise to a boundary layer in
the vicinity of the caustic in which the amplitude is large but still finite.
The thory of geametrical optics allows us to connect through a caustic by
including an appropriate phase shift in the (complex) amplitude. The value of
this phase shift is m(n/2) where m is the order of degeneracy of the
projection, or equivalently, the number of dimensions lost by the ray tube at
the caustic or the change in the nuwber of branches in the vicinity of the point
considered. The sign is chosen according to whether the caustic is traversed in
the direction of increasing (-) or decreasing (+) S {18). %his was first
realized by J. Keller in his 1958 paper (18] where he also pointed out the need
for many-branch descriptions of the form

T
V= kzl A, exp(xsl/h) .“.5,




where r is the number of rays through the point under consideration. Demanding
single valuedness for ¥ he showed that in nonseparable systems, quantum nmumbers

_i. for bound states are in general quarter intergers (asymptotically). V. Maslov
[19] proved the asymptotic character of this approximation as h - 0 for a
special class of problems: essentially "nice" time-independent potentials in
. . several space dimensions and initial conditions that vanish outside some finite

region. He showed that for Bq. (4.2) with H in the fomm

Y

Hp,a)= 3§ P2 + Vi@ (4.6)
and with initial conditions of the form
®
v(9,0) = a(q) exp(ib(q)/h) (4.7)
s ) : . - . . :
- with a(g) zero outside a finite region that an asymptotic expression for v is
given by
| (a,t) = ]Zr a(q,)3(qiq ) "F expli s (q,t) - iZu | +0m) ' (4.8)
vl E b T g o T iz '

here J is the Jacobian of the mapping fram the initial point q; of the k=th ray

through g to the point q induced by the classical Hamiltonian flow, S is the
classical action along that ray and e is the Morse index of the ray, equal to
the sum of the numbers m for every encounter of the given ray with caustics. :if.-'-i'*
This expression fails at caustics, where the Jacobian becomes singular.

In part B, we derive a formula similar to (4.8) for our problem, without
attempting a rigorous justification (for which we would have to replace our _—

plane wave initial conditions with a function equal to it inside some finite .
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region, that is large compared to the wavelength, and zero outside). The
classical problem for the Kapitza-Dirac potential corresponds to a pendulum with

oscillating strength, described by the Hamilton-Jacobi equation

S, + 52+ ¢"q cos? x cos’t = 0 : (4.9)
with initial condition

S(x,0) = e28x, (4.10)
Here B is the wavenumber of the incoming plane wave. We consider especially
8=0(1/c?), q= 0(1/€2). It can be seen that when B is in a rational relation
with the periods of the potential the classical problem exhibits resonance (at
least, in the sense of perturbation theory), resulting in strong bending of the
rays. We treat the case 8 = 1/2¢? (lowest order resonance) which leads to

caustic formation in a time scale of order l/e.

The leading behavior of the rays if found as
x =t +Co(r,E) + 0(e)

= 1.l 2
P +c[ cor.] + 0(e?) (4.11)

where Cp is a solution of the pendulum equation

......................................
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Col0,&) = £,Co(0,£) = O (4.12)

and £, fixed along a ray, gives its position at t = 0 (t = et is a slow time
scale). We see that the rays are split into groups performing an oscillation
. around centers which drift with uniform velocity. It is clear fram (4.1l) and
(4.12) that caustics (locations of crossing rays characterized by the condition
x = 0) are cusp-like. They fomm at the center of each group. (Fig. 7) and move
out, toward the saddle points. New cusps form periodically (with period
T = 2n/¢). Every cusp marks an S-shaped folding of the surface P = P(x,t) (Fig.
8) (caustics are singularities of the projection of this surface on the x-t
. plane, i.e. they correspond to P_ becoming singular). The amplitude is found to
| leading order as

Ag(t,E) = (COE)-!! + 0(e) (4.13)

On caustics x6 = 0 implies Coy = 0 and A appears to become singular. The reason

is easy to see if we rewrite the amplitude equation
2 . D
A, + 2pA +pA-icA, =0 e

A(x,0) = 1 a9

1.' 1 [l .
L
e aa

in characteristic coordinates, (t,t), in which it becomes
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P
—{ - 02} .l_.a_ 2 =
A+ = A-c2i ["e 2]’ a=o (4.15)

Clearly, the 0(c2) term which was neglected in deriving (4.8) becomes important-
l near the caustic. 1his suggests studying Eq. (4.15) by techniques of singular

perturbation theory. This approach was taken for the reduced wave equation by

Buchal and Keller [17]. It produces the correct leading behavior near a smooth

convex caustic.

2y

An expansion for ¢ is utilized .in the form
- v exp(iS, /e?) (4.16)
N 1 A explis,
with k ranging over the number of distinct branches of the surface P = P(x,t).
i' Branches join at caustics. A local coordinate system is introduced at caustics

and Eq. (4.15) is scaled to give the leading behavior in their vicinity.

Away from cusps, two branches join at a caustic, an incoming and an
outgoing branch. Using a matching procedure, we can determine A on the outgoing
branch fram the (presumed known) values of A on the incoming branch. To carry

out the matching it is necessary to analytically continue A into the

: (classically forbidden) side of the caustic inaccessible to the rays and demand O
)

that the amplitude decreases exponentially away from the caustic in this region (Fig. 9) = 1
The main result of this analysis, applied to our problem, is that near the "*
caustic the amplitude is of order o
)_ :
A~ 0(e71/6) (4.17)
- '1
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which might play a very significant role in situations where there exists the
possibility of nonlinear interaction (e.g. refractive media, radiation, etc.).
The singular perturbation analysis of Eq. (4.15) can be carried out for other
cases, e€.8. near the "cusp" (which only appears as a cusp in the x-t plane, being
e a smooth curve on the surface P = P(x,t) itself) or even for higher dimensional
caustics. One can use this approach to get leading order estimates for the
amplitude. To carry out the calculation, especially in higher dimensional
problems, one can be guided into the proper scaling by considering the normal
forms that exist giving generic coordinate systems of the surface near various
types of caustics (for a classification and a list of nommal forms see, e.g.

Arnold [20]). This way we can find, for example, that near the cusp

A 014 (4.18)

B. The Expansion Away From Caustics

L In Sec. 111 we were led to study a problem of the type

Vo — QVIX,t"/e2) = - iwt'

AR AR -

v(x,0) = exp(igx) (4.19)
where

?fi

€ = hw/2mc?
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qg= -;—i; a2 . o

Rewritting in terms of t = t'/e2, Bg. (4.19) becomes -
e2(h,, - QV(x,t)y) = - iy,
(x,0) = exp(igx) (4.20)

To keep the discussion general, we leave q as a free parameter. We assume that

g has the form

8=z (Bg * 0By + 028y + ..0) (4.21)
where

o= ezq!’

in Sec. 111, the case g = 0(1), 8 = 0(1) was studied. Here we extend the

discussion to other interesting limits. Using the ansatz

v~ ]{‘ A, exp(iS, /c2) (4.22) :.;';_t;.
]
we find that each branch must satisfy (for simplicity we drop subscripts) _;-I_;l
.-.‘.}

- A (52 bqv) - i(A_ + + +e2A = :
= (st + Sx + c¢4gv) 1(11\t 2SxAx sxxA) £ Axx 0 (4.23) ]
]
o
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We recognize the expression in the first parenthesis as the Hamilton-Jacobi

equation for the classical action and we resolve the apparent ambiguity in A,S

by zequirir;g that S is precisely the classical action, so that
s, + si + e*gv(x,t) =0
Then the amplitude A satisfies
A, +25A +5 A- iezAxx =0

with initial conditions

S(x,0) = ¢2px, A(x,0) =1

(4.24)

(4.25)

(4.26)

It is easily seen that the subcharacteristics of Eq. (4.25) found by neglecting

the temm -ieZAxx are the same as the characteristics (rays) of Eq. (4.24)

Since the phase equation is independent of the amplitude it is studied first, to

determine the ray structure of the problem.

Utilizing t as the parameter along the rays and £ as the ray variable, i.e.

assuming that the equation of a ray is x = x(t,&) with x(0,€) = £, we rewrite

Eq. (4.24) in characteristic form

X .

3t 2P

P _ _ 2
ot = ° vx

(4.27a)

(4.27b)

(4.27¢)

-—— -
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é - - o, (4.27Q)

whereweletsst,St=Qand

1.;1.! .a_l N1
at 2-)tg atx 3tEaxt

is the directional derivative along the rays. 1he x-P system (Eqg. (4.27a,b) can
be solved first, then (Eq. (4.27c) and BEg. (4.27d) to allow us to find S.

We shall study BEg. (4.27a,b) using MTS perturbation theory. We expect the
weak (0(02)) forcing to result in a slow modulation of the rays. The time scale

for the lowest-order resonant case we shall consider is
t=0ot, o= ezq” (4.28)

while

= Xo(tytsE) + 0%, + o2x, + 0(c3)

o
L

P, + oP, + 02P, + 0(c3) (4.29)

with initial conditions

x(0,8) = ¢

P(olg) = GZB x 80 + aBo + 0262 + eae . (4.30)

ot
O
2 g gt ot g

Aaa

Sntende .




26

Substituting the expansions (4.29) into (4.27) and equating coefficients of like

powers of ¢ we find (recall that 3/3t = 3/3t + e(3/5t)) the hierarchy of i
: 0 x, =2, | ..‘
Pot = ( (4.31)
K "
q 0(o) X0 = 2P " %y,
Pre ™ = Por (4.32) -

0(02) X =2 -x
2t 2 ot

| 4 = - P -V, (x ,t 4.33
2t 1T x o') 4.33)

Uith Io C. _-;"_‘;;
xo (OIE) = El xj. (005) = 0' i = 1'2' eoe
Pi (006) = Bi' i = 0'1'2' XX (‘034)

Solving we find

0(1) Xg = 28pt + Co(1eg)s  Cy(0sg) = ¢

Pp = By(1s8)s Bp(0,8) = 8y (4.35)
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0(o) X, = BOth + (28, - ch)t + C, (1,£)

Pl B - Bott + Bl (T,;) (‘036)

To ensure that the expansions (4.30) are well ordered (asymptotic) we must
disallow unbounded growth in xi'Pi' i > 0, so the secular terms must be

suppressed. “his means

Bot = 0 ioeo Bo = 80

By = 3C,, +C, (0,6) = 2B,(0,6) = 28, | (4.37)

So far, Cy(t,£) has been undetermined. To find it we need to consider the next

order, 0(c2). We get

t
1 1
PZ = { - E’COTT - E- I Vx(ZBot + Co,t)dt}t + BZ(T,E)
0
B,(0,¢) = B8, (4.38)

Again, to suppress unbounded behavior in P,, we demand

1 lim
7€t tom I Vy (280t + Cort)dt = 0 (4.39)

0




(assuming the limit exists, which it does for V periodic in t). The
construction can be continued to higher order, but here we only need the leading —
behavior. We found

X = 285t + Cq(1,€) + 0(a) ' -

P=6g+al3C,) + 02 (4.40)

where Cy satisfies Eq. (4.39). For the potential

V(x,t) = cos?x cosit - v o=- cos?t sin2x (4.41) .

we have

t t -

= -1 : __1 .

I v.at B8, cos2(28,t + Cop) B(28551) cos2[(28+1)t + Cy)

0 0 g

a bounded function if 89 # 0, + 1/2. In this case, Eq. (4.39) gives <

Co(Est) = 81t + £ and the slow time scale t only appears as a modifications of
the fast scale t. In general for a problem of this kind, we should consider a
modified fast time scale

t* = wlo)t = (wp + owy + .0t

and a slow time scale

1= o%t




where o is determined by the type of resonance expected. To treat the simplest

case, we consider

Bo=1,8 =0 =12 ...

g=¢2, g=g¢ (4.42)

Now we have a lowest order resonance; the integral in Eq. (4.39) becomes

t
=1 L3
J det 3 cos (2t + 2Cy) + T3 cos (4t + 2C))
0
- 2 cos2Cy - & sinc (4.43)
16 0”3 0 .
and the equation reads
ZC‘.”.r + 8in2Cy, = 0 (4.44)
with 1.C.
Co(o'c) = E' COT(O’E) = 0 (4.45)

Finally, utilizing Eq. (4.40) in Eq. (4.27c) we find

1 1

Turning our attention to the amplitude equation
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. -2
h At + zmx + PxA € iAxx- 0 (4.46) .4,,-1
X ) . ':~':.-j
b - B '-.j
N we transform it to characteristic coordinates
- 9

oty

2,13 2 .3
x "% w PR (4.47)

to find

11

A+ x 1P A- g2 [x‘l -‘-’—]2 A=0 : (4.48) 3

t g ¢ £ 3 .

- nd

Assuming - _
A=Rap+ e + 0(?) __«
LY

and using 1
- -

= Co + 0(e)

e = Coc ©

= .]; 2
PE e(z COTE) + 0(e?)

we have
At + (Co

g ¥ 06N (G Cy ) + 0(e2)A = 0(c2) (449)

from which we find e
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0(1) Aot =0+ Ay = Ay(r,g) with A,(0,¢) =1

|a>

0(e) A +A +

1
1t ot - 7€ =0~

01§

lg]

(12

1 corE
A, =- (A +3A ——=)t + (bounded part)
ot 2 COE

8o finally, demanding that Abe bounded we find that A, is given by

Ag(t,sE) = (coe)"’ : (.50

Collecting our results we see that the leading asymptotic behavior of y is given
as:

s
v ()

+0e)) exp — (3 t + ColrsE) + Ole)) (4.51)
E
with C, satisfying kq. (4.44)-(4.55). We see (Fig. 7) that the resonance causes

a slow-time bending of the rays so that the surface P = P(x,t) given by

x = % t + Colr,E) + 0(e)

p=l+cdc ) toer) (4.52)
develops folds at points where XP = 0, or equivalently, xe =0 > COE = 0,
Clearly this vanishing leads to a blowup in Eq. (4.50), invalidating our
asymptotic solution at such points. What went wrong in our analysis is

apparent: Eq. (4.48) was analyzed by a regular perturbation expansion,

o e T et e e e e e, At e e e ‘.-.'. . 3
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affectively neglecting the 0(c2) temm in finding A . In the neighborhood of

envelopes of rays, where x_= 0, this tewum clearly will be important so that A

3
would stay finite, although it will became very large there. For this reason

points where x, = 0 are called caustic points. In the next section we camplete:

11
the picture that this analysis presents by discussing the behavior of solutions
in the neighborhood of caustics.

C. 'The Behavior Near Caustics

We now investigate the behavior of the amplitude near caustics.

Following Ludwig (21), we recognize expansions of the form

¥ v A exp(iS,/c?) (4.53

k

as resulting when expanding integrals of the type

j A(x,t,z) exp(iB(x,t,z)/c2)dz
by the method of stationary phase. Clearly, assuming that y can be represented
as a superposition of plane waves, we will have, as ¢ + 0, contributions from
points where

B =0, B %0 (4.54)

z 22

Such points can be shown to correspond to regions away fram caustics, where the

expansion (4.8) is valid. Smooth caustics correspond to

Bzz =0, B"z ¥0 . (4.55)
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while, finally cusped caustics are found if

B, =0,

22z 0 (4.56)

B2z
Systems of rays in two dimensions have in general singularities of the “fold"
(i.e. émooth caustics) or "tuc" (i.e. cusped caustics) kinds (see Arnold [20]),
unless same exceptional situations happen. An easy calculation shows that for
our problem the worse thing that can happen is a cusp, so we only need to
consider the cases for Egs. (4.55) - (4.56). We can encompass all cases by the
exact change of variables

B(x,t,2) = S(X,t) + rjf - ry£2 + 541 (4.57)
(with r; = r, (x,t)) which is related to the nommal form that obtains near a
"tuc" singularity (Eq. 56)). Then, by following the same procedure as in Ref.
[21] for the Schrodinger equation, we can construct uniformly valid expansions
which, away from caustics, reduce to Eg. (4.8), near smooth caustics have
leading temms involving the Airy function and its 1st derivative and near the cusp
involve a generalized Airy function with two arguments and its two 1lst

derivatives. By considering the asymptotic behavior of the Airy functions we

can find the order of the amplitude in the vicinity of caustics, and by
analytically continuing to the classically inaccessible regions we see that our
solutions decay exponentially there. Since here we are not as much interested
in the detailed behavior at all regimes but mainly on the order of magnitude of
the focusing at caustics we shall follow instead a singular perturbation
approach due to Buchal and Keller (17]. We introduce boundary layers at

caustics and determine the solution in their vicinity by stretching coordinates
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and matching with the "outer" solution. We shall use this method to give the

- expansion ;::ear a smooth convex portion of the caustic and then we shall give an
argument about the behavior near the cusp. We prefer the singular perturbation
approach because it would be applicable in a more interesting setting, namely a-

I . weakly nonlinear equation that has singularities related to folding
subcharacteristics. Clearly, in such cases, it would be impossible to argue
fram the point of view of integral representations, while the boundary layer

- idea would still be relevant (after suitable modification).

We wish to study the equation

_ £ . 5 1ar
A +—=A-ic?2 [=—-{Aa=0 (4.58)
) t xE [xg aE

near characteristics where xg = 0 and the second derivative term becomes

singular and cannot be ignored. The equation of a ray was found to be (to the

leading order)

Xx =t + Co(E,T) + 0(e) ' (4.59)

while on caustics x_ = 0, i.e. C

£ = 0, We let

0¢
Cuﬁn)=0»r=ma,i&.t=%MU

Then the equation of a caustic will be

x =L be) + Cotebie) + 06) (4.61)
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with Ref. [17] we introduce a new coordinate system (r,s) where r is arclength
along the caustic and s is arclength along the ray tangent at r, measured
xespectiveiy, fram some fixed point and fram the point of contact (positive

after, negative before) (Fig. 10). An easy calculation shows that, near the

i. ' caustic (i.e. for Tt - b(f) "small")
s = ';’—2-('[ - b(E)) + 0Q) (4.62)

Along the caustic we find (for £; same fixed number)

; r = ',—z- (b(E) - b(E)) + 0(1) (4.63)
‘j: while the radius of curvature of the caustic p is found fraom
i 2(c b.C )

€ +
; _‘1’_ - OEt 4 0;?3/2 (4.64)
bgll + (1 + € )%) (€,b(€))
I where cO;r <0,Db COE.t > 0 on the caustic (Fig. 11). The analysis we present
. here will be valid unless p = », which happens at the inflection point. The
difficulty is not a real one though: it can be resolved by using a better
coordinate system, e.g. arclength along the caustic and normal distance from the
)
- caustic (our present coordinate system would become rather awkward). In the
convex part of the caustic, we set
; p= —28(5). (R =0(1)) (4.65)
M €
- Utilizing Eqs. (4.62) - (4.63), we find that the equation becames (to leading :
)

order)

AN R
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1 A iR13 (1
JEAS + S A s (s “s] =0 (4.66)

all the terms of this eguation will be of the same order if we introduce a

scaled variable

c= 52/35

Clearly (see Eq. (4.62), o is another slow time scale, g ~ 52/3 (t - b(g)/e). In

tems of it we have

!’. 1 Rz r .a_ l =
ZAO + p- A-1-J-lo % (o Ao] 0 (4.67)

This equation is analyzed in Ref. [17] where a matching with the outer expansion
is carried out to leading order. Adapting the results to our case, we have that

the outer solution is
B = (C | ¥k 1 - BE)C,, (€D} ™%« <bE)
Ap = exp(-1i/2)|Coe | % 1> B(D)

(in agreement with Eq. (4.8), and the discussion in part A), while the inner

solution is

exp(: 77 )

X - e-1/62S/6"1/2R-1/3|c°ET|-3s r

- i 3
x al(=(3 30277 exp(s 21 exp(-i pvy
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(according to t - b $ 0).

Therefore we can say that the caustic boundary layer is of thickness e2/ S(in T)

and the amplitude there is

/6)

A= 0(&:-1
We are able to carry the matching out between incoming and outcoing branches by
superimposing

V=9 +v

incoming outgoing

and demanding that the continuation in the classically inaccessible region is
exponentially decaying away fram the caustic.
It must be noted that we did not give a uniformly valid expansion but only

leading terms near and away fram the caustic. As shown in Ref. [21], a

/ 6,

involving the derivative of the Airy function, which in same intermediate region

uniformly valid expansion contains a term that in the caustic is of O(e:1
becames important and must be included. A similar term should be obtainable by
the matched expansion method if we carry it to the next order.

We close this discussion by giving an argument for the order of A at the
cusp. By introducing

T=1-19+ Z= - &

where (tg,£7) is the position of the cusp with

o

'1.|

k.
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] . .,
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%o
Xo= -+ Col(Egrty)

we have that in the neighborhood of the cusp rays are given by (to leading

oxder)

™ |-

1
+ Cog_rZT + KCOEEE

(all functions evaluated at (t4,£p)). Then

X =C zz"'...

1
(] + -—
£ = Soert ¥ 2 Cogee

1
= -— + e
P €3 COTE

It can be easily seen that at (gg,1q), (c0£r< 0, C > 0, so that Eq. (4.68)

0EEE
is a surface in (x,Z,T) space that forms a fold at T = 0 as expected.

la'

Transforming the amplitude Eq. (4.58) to (Z,T) we have (letting COTE

Coggr = P)

2
A+ —2 —a-de2 ([ —L 2" a=0
aT + L&bz2 aT + 4bZ2

and all terms are of the same order if we introduce scaled variables
= ¢2%, 2= ¢%

where
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a=1/4 s

We note that ac + %bz2 = 0 giving the caustic is a smooth curve: its projection '

in the x~t plane has a cusp at 6 = L = 0 (x = xp). The outer expansion ) -1

. [

A, = (COE)'I/2 becomes, in the vicinity of the cusp '

1 ‘ R

A = (Cog.T + 7 Coger 22)* .

and in terms of inner variables .-»_ ]

-]

.o

. - - v 4
Ag = € 1Mlac’ + -;- bz?| 12 (4.69) =
Without being proof that A = O(e‘l/ 4) near the cusp, it still provides us with i
-, o 1

F a good indication as to what we can expect there (it turns out to be what we R
Ef? would get if we carried out Ludwig's method for this case) [22]. jZ;;.'j:
.- <
V. COONCLUSION pED |
- o

In this paper we have investigated Kapitza-Dirac scattering in two

experimentally interesting regimes of values of the governing parameters q, g _

and ¢. The choice of two regimes was based on the distinct methods used for R

their study as well as qualitative differences in the behavior of the system.
Previous analyses of this problem let to conflicting answers on the role of the

time dependent portion of the Hamiltonian. In the first case examined in this

4l
|

paper (g, B << 1) it was found that, to lowest order, treatment of a

)
B .
AR PR

SR R SR N PPy

’
N
Jrtatatals

time-averaged problem was basically justified. Time dependent effects were
essentially of two types: a small (0(cq)), rapidly oscillating correction to

the amplitude and an O(c2) correction to the frequency. This analysis breaks:




40

down as g or B becomes camparable to € !. We showed how to treat a
representative case using a wemiclassical approximation. It was found that
again the l;ehavior is quasiperiodic but under certain "resonance" conditions
focusing leading to large localized maxima of the probability amplitude is
possible.

One obvious advantage of an analysis in the weak coupling regime is that it
provides a solution that can easily be used to study scattering probability as a
function of any of the parameters. For instance, we provide the first study of
the sensitivity of scattering to the standing wave intensity. Fram our studies,
we find the inconclusive results of the experiments not to be surprising. |

Finally, we would like to point out the general applicability of the
perturbation technique employed in our study to other nonseparable
time-dependent situations. In fact, the qualitative aspects of our results only
depend on the potential being a periodic function of space and time. Extension
to more general time periodic potentials is straightforward. Of course, results
of this type are subject, especially in their long-time applicability, to the
limitations of multiple-scaling perturbation theory.

L N
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FIGURE CAPTIONS

Fig.
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Fig.

Fig.

Fig.
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Fig.

Fig.

Fig.

Fig. 10.

1.

2.

5.

A schematic of Kapitza-Dirac scattering.

Scattering probability P as a function of g when 1 = 2 for scattering

form p; = hk to (a) Pe 3hk, (b) Pg = hk, (c) pe = -hk, (d)

Pg = -3hk.

Scattering probability P as a function of g when 1 = 2 for scattering
from Pg = -3hk to 3hk.

Scattering probability P as a function of tr for scattering from

Py = —hk.to Pg * hk when (a) g =3, (b) g = 5.

Scattering probability P as a function of t for scattering from

P; = -3hk to p, = 3hk when (a) g = 3, (b) g = 5.

Scattering probability P as a function of g for the transition from
Pi = ghk to Pf = (8 - 2)hk when 1t = 2 and (a) g=3, (b) g = 6.

(a) Phase plane for tg. (4.12)

(b) Rays (Eg. 4.1lla) in x - t plane

The surface p = p(x,t) (scales as shown).

Structure of solution near a fold of the surface p = p(x,t).

(a) Outer (classically accessible) region: solution can be given as
the superposition of two waves.

(b) Boundary layer: solution is an Airy function oscillating with
large amplitude to the left of X, (caustié) and decaying to the right.
{c) Outer (classically inaccessible) region: solution decays
exponentially.

This is only a schematic true A complex.

Ray-caustic coordinates: r is arc length along caustic (solid line),

s is arclength aleng ray (dashed line). At C, s = O while at A,

r =0.




Fig. 11. Snapshots of Cy(t,t) as a function of ¢ for 0 = t5 < 1< 1< 73, At

\ tll.e caustic (t:05 = 0) we have CM;.t < 0, sgn CO_r = -sgnt (modr) while at

£(modr) = 0 we have an inflection point (C = 0).
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